

DECLARATION OF PERFORMANCE

No. 0100 - EN

1. Unique identification code of the product-type: Injection system fischer Powerbond

2. Intended use/es:

Product	Intended use/es
Bonded anchor for use in concrete	For fixing and/or supporting concrete structural elements or heavy units such as
	cladding and suspended ceilings, see appendix, especially Annexes B 1 to B 5

3. Manufacturer: fischerwerke GmbH & Co. KG, Otto-Hahn-Straße 15, 79211 Denzlingen, Germany

4. Authorised representative: --

5. System/s of AVCP: 1

6a. Harmonised standard: ---

Notified body/ies: ---

6b. European Assessment Document: ETAG 001; 2013-04

European Technical Assessment: ETA-12/0160; 2016-04-21

Technical Assessment Body: DIBt

Notified body/ies: 1343 - MPA Darmstadt

7. Declared performance/s:

Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values under static and quasi-static action for design	See appendix, especially Annexes C 1 to C 3
according to TR 029 or CEN/TS 1992-4:2009, Displacements	

Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A 1		
Resistance to fire	NPD		

8. Appropriate Technical Documentation and/or Specific Technical Documentation: ---

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

1.V. A. Dun

Andreas Bucher, Dipl.-Ing.

Wolfgang Hengesbach, Dipl.-Ing., Dipl.-Wirtsch.-Ing.

i.V. W. Wylal

Tumlingen, 2016-04-28

- This DoP has been prepared in different languages. In case there is a dispute on the interpretation the english version shall always prevail.
- The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.

Specific Part

1 Technical description of the product

The injection system fischer Powerbond is a bonded anchor consisting of a cartridge with injection mortar fischer FIS PM or FIS HB, an anchor rod and the corresponding fischer Power Sleeve FIS PS.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements			

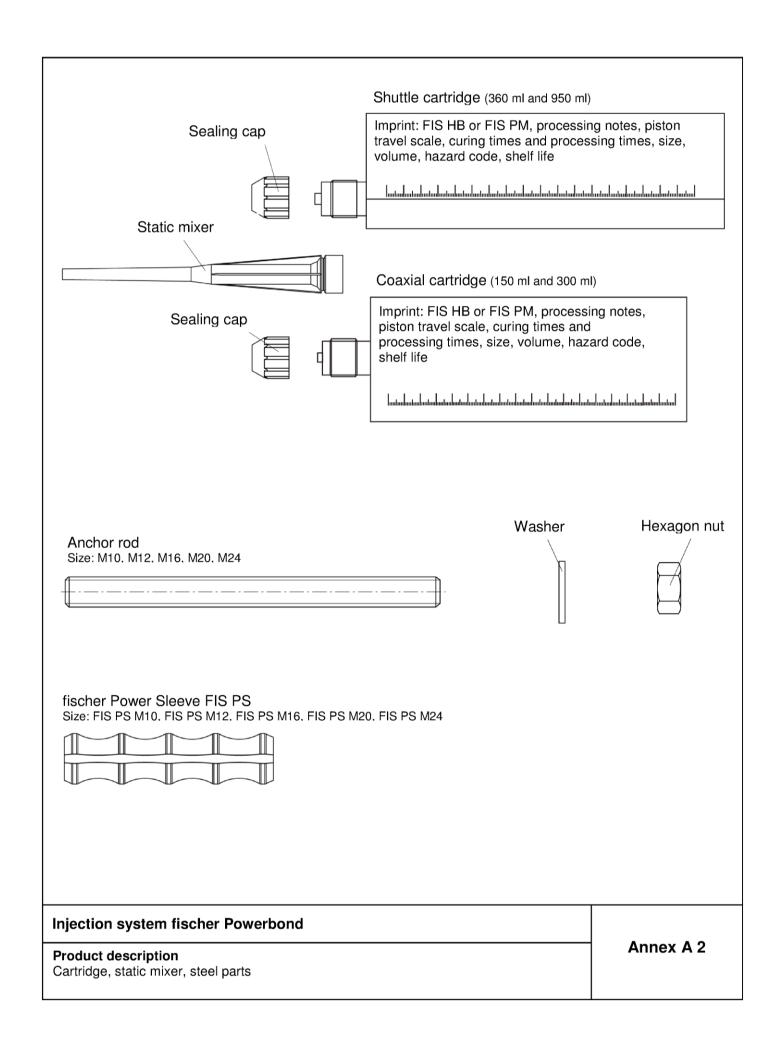
3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)


The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Installation conditions $h_{\text{ef,min}}$ = sleeve lenght L_{H} (see Table B2) $h_{\underline{min}}$ $h_{ef,max} = h_0$ $h_{ef,max} = 2 \cdot sleeve length L_H$ (see Table B2) $\overline{h}_{\underline{min}}$ Push-through anchorage (annular gap filled with mortar) Injection system fischer Powerbond Annex A 1 **Product description** Installation conditions

Table A1: Materials

Part	Description	Material						
1	Mortar cartridge		Mortar, hardener, fillers					
		Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C				
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1: 2013 zinc plated ≥ 5μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 f _{uk} ≤ 1000 N/mm² A ₅ > 8% fracture elongation	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662; 1.4462 EN 10088-1:2014 f _{uk} ≤ 1000 N/mm ² A ₅ > 8% fracture elongation	Property class 50 or 80 EN ISO 3506:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 8\% \text{ fracture elongation}$				
3	Washer ISO 7089:2000	zinc plated ≥ 5μm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	1.4565;1.4529 EN 10088-1:2014				
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2013 zinc plated ≥ 5µm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	Property class 50, 70 or 80 EN ISO 3506:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4666 EN 10088-1:2014	Property class 50, 70 or 80 EN ISO 3506:2009 1.4565; 1.4529 EN 10088-1:2014				
5	Power Sleeve	Stainless st	eel A2 or A4	1.4565; 1.4529				

Injection system fischer Powerbond	
Product description Materials	Annex A 3

Specifications of intended use:

Table B1: Overview use categories and performance categories

Anchorages sub	ject to		FIS HB	or FIS PM	with		
			Anchor rod	with	Power Sleeve		
			~	+			
Hammer drilling				all sizes			
Diamond drilling			Size	M10, M12	, M16		
Static and uncracked concrete		ı al	all sizes		Tables		
quasi static load, in	cracked concrete	all sizes		B2, C1; C2; C3; C4			
Use Dry	or wet concrete		all sizes				
category	Flooded hole		all sizes				
Installation temp	erature	-5℃ bis +40℃					
Service tempera	ıture	40℃ to +80℃	0°C to +80°C (max. long term temperature +50°C and max. short term temperature +80°C)				

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

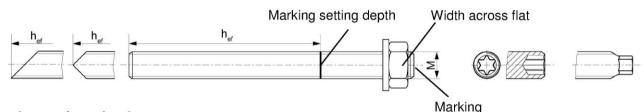
Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed under the responsibility of an engineer experienced in anchorages and concrete work
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009

Installation:

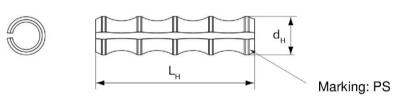

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- · In case of aborted hole: The hole shall be filled with mortar
- · Marking and keeping the effective anchorage depth
- Overhead installation is allowed

Injection system fischer Powerbond	
Intended Use Specifications	Annex B 1

Table B2: Installation p	arameters							
Size (anchor rod)				M10	M12	M16	M20	M24
Width across flat		SW	[mm]	17	19	24	30	36
Nominal drill bit diameter	er	d_0	[mm]	14	16	20	25	28
Depth of drill hole		h_0	[mm]			$h_0 = h_{ef}$		
Corresponding Power S	Sleeve	FIS	[-]	PS M10	PS M12	PS M16	PS M20	PS M24
Length of sleeve		L_H	[mm]	60	72	96	120	144
Diameter of sleeve		d _H	[mm]	14	16	20	25	28
Effective anchorage de	pth ¹⁾	h _{ef,min}	[mm]	60	72	96	120	144
6 • d to 12 • d	-	h _{ef,max}	[mm]	120	144	192	240	288
Minimum edge distan	ce and minimum			≤ h _{ef} ≤ h _{ef}	,max			
Cracked concrete		S _{min} = C _{min}	[mm]	50	55	60	80	100
Uncracked concrete		S _{min} = C _{min}	[mm]	55	55	65	80	100
Diameter of clearance	Pre positioned anchorage	d _f	[mm]	12	14	18	22	26
hole in the fixture ²⁾	Push through anchorage	d _f	[mm]	15	17	21	26	30
Minimum thickness of concrete member h _{min}			[mm]	h _{ef} + 30 (≥ 100)		h _{ef} +	- 2d ₀	
Max. torque moment T _{inst,ma}			[Nm]	20	40	60	100	120

 $h_{ef,min} \le h_{ef} \le h_{ef,max}$ is possible

fischer anchor rods


Marking (on random place):

Property class 8.8, stainless steel, property class 80 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: •• Commercial standard threaded rods, washers and hexagon nuts may also be used if the following

Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Marking of embedment depth

fischer Power Sleeve

Injection system fischer Powerbond	
Intended Use Installation parameters	Annex B 2

²⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

TableB3: Parameters of steel brush FIS BS Ø

Drill bit diameters	[mm]	14	16	20	25	28
Steel brush diameters d _b	[mm]	16	20	25	27	30

Table B4: Maximum processing times of the mortar and minimum curing times

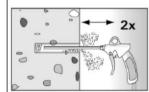

Concrete temperature ³⁾			Minimum curing time ¹⁾ t _{cure} [Minutes]	Maximum processing time ²⁾ t _{work} [Minutes]
[°C]			FIS HB / FIS PM	FIS HB / FIS PM
-5	to	±0	360	
>±0	to	+5	180	:
>+5	to	+10	90	15
>+10	to	+20	35	6
>+20	to	+30	20	4
>+30	to	+40	12	2

Injection system fischer Powerbond	
Intended Use	Annex B 3
Cleaning tools	
Processing times and curing times	

 $^{^{1)}}$ In wet concrete or flooded holes the curing times must be doubled. $^{2)}$ The working temperature of the mortar must be at least +5 $^{\circ}\text{C}$ $^{3)}$ The base temperature during the curing time must not fall below -5 $^{\circ}\text{C}$.

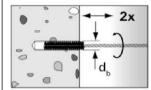
Installation instructions part1

Drilling and cleaning the hole (hammer drill)



Drill the hole. Drill hole diameter do and drill hole depth ho see Table B2

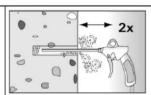
2



Size M10, M12, M16 Blow out the drill hole two times with manual pump

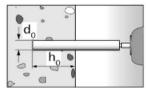
All sizes Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

3

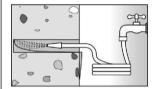


Brush the drill hole two times with corresponding steel brush, beginning from the bottom of the hole. If needed with extension. The brush must produce natural resistance while entering the bore hole. If not, the brush is too small and must be replaced with a proper brush. Diameters of brushes db see Table B3.

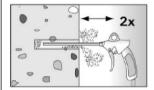
4



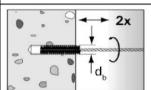
Size M10, M12, M16 Blow out the drill hole two times with manual pump



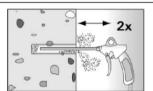
All sizes Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).


Drilling and cleaning the hole (drilling with diamond drill bit)

Drill the hole. Drill hole diameter do and drill hole depth ho see Table B2



Break the drill core and draw it out. Flush the drill hole until the water comes clear.


Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

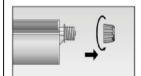
3

Brush the drill hole two times with corresponding steel brush, beginning from the bottom of the hole. If needed with extension. The brush must produce natural resistance while entering the bore hole. If not, the brush is too small and must be replaced with a proper brush. Diameters of brushes db see Table B3.

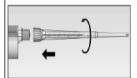
4

Blow out the drill hole two times, using oil-free compressed air (p > 6 bar).

Injection system fischer Powerbond


Intended use

Installation instructions part 1


Annex B 4

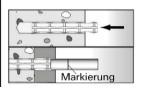
Installation instructions part 2; Preparing the cartridge

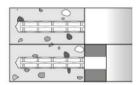
5

Twist off the sealing cap

Twist on the static mixer (the spiral in the static mixer must be clearly visible).

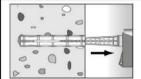
6


Place the cartridge into the dispenser.

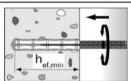

Press approximately 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

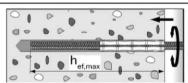
Installation Power Sleeve and anchor rod

7

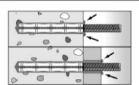


Insert the Power Sleeve into the clean drill hole. For push through anchorage use a suitable tool with marking for setting depth.


The Power Sleeve must be flush with the surface of the concrete.

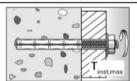

8

Fill approx. 2/3 of the hole through the Power Sleeve with injection mortar FIS HB or FIS PM beginning from the back of the hole, slowly withdrawing the mixer with each trigger pull. If necessary use an extension.


9

Press the anchor rod down ti the bottom of the hole, turning it slightly while doing so. $h_{\text{ef,min}}$ and $h_{\text{ef,max}}$ see Table **B2**

10



For correct installation excess mortar must emerge from the drill hole after reaching the setting depth mark. Otherwise remove the anchor rod immediately and re-inject additional amount of FIS PM mortar. For push-through installation the annular gap has to be filled with mortar.

Wait for the specified curing time t_{cure} see Table **B4**

11

Mounting the fixture T_{inst,max} see Table **B2**

Injection system fischer Powerbond

Intended use

Installation instructions part 2

Annex B 5

Table C1: Characteristic values under tension load

Size				M10	M12	M16	M20	M24	
Steel failure									
Steel zinc pla	Prope	erty 5.8	[kN]	29	43	79	123	177	
	cla	ass 8.8	[kN]	47	68	126	196	282	
Stainless ste	ol Bron	50	[kN]	29	43	79	123	177	
ts o A4		70	[kN]	41	59	110	172	247	
Characteristic resistance Nature resistance High corrosion resistance of the corrosion	Cia	80	[kN]	47	68	126	196	282	
B 로 High corrosid	on Duage	50	[kN]	29	43	79	123	177	
resistance	Prope		[kN]	41	59	110	172	247	
ပ ^ယ steel C	Cia	ass 70	[kN]	47	68	126	196	282	
Ctool zino nl	Prope	erty 5.8	[-]			1,50			
Steel zinc pla		ass 8.8	[-]			1,50			
Otalialasasata	al Duare	50	[-]			2,86			
Stainless ste			[-]			1,87			
Safe Ms,N A4	Cla	$\frac{70}{80}$	[-]			1,50			
Stainless ster date of the stainless sterial safety Factor Mas, 1 High corrosid resistand steel C	on Duage	50	[-]			2,86			
The to resistand	Prope		[-]			1,50			
o de steel C	Cla	ass 70 80	[-]			1,60			
Pullout and concre	te cone failure	in cracke	ed concret	te C20/25		,			
Diameter for calcula	tion	d	[mm]	10	12	16	20	24	
Characteristic resist	ance	$ au_{Rk,p}$	[N/mm ²]	10	10	10	10	8	
Factor acc. CEN/TS Section 6.2.2.3	1992-4:2009	k _{cr}	[-]	7,2					
Pullout and concre	te cone failure	in uncra	cked cond	rete C20/2	5				
Characteristic resist	ance	$ au_{Rk,p}$	[N/mm ²]	13	13	13(12) ³⁾	11,5	11	
Factor acc. CEN/TS Section 6.2.2.3	1992-4:2009	k _{ucr}	[-]			10,1			
Section 6.2.2.3		C25/30				1,06			
	_	C30/37	[-] [-]			1,12			
Inoropoina footor for	_	C35/45							
Increasing factor for	$\psi_{\rm c}$ –	C35/45 C40/50	[-]			1,19 1,23			
$ au_{Rk,p}$	_	C40/50 C45/55	[-]			1,23			
	_		[-]						
		C50/60 c _{cr,sp}	[-]	1 75 . h	1 05 . h	1,30	0 - b	0 - h	
Edge distance			[mm] [mm]	$1,75 \cdot h_{ef}$ $1,85 \cdot h_{ef}$ $1,95 \cdot h_{ef}$ $2 \cdot h_{ef}$ $2 \cdot h_{ef}$ $1,5 \cdot h_{ef}$					
$\begin{array}{c c} h_{ef}/d > 8 & c_{cr.s} \\ \hline Spacing & s_{cr.s} \\ \end{array}$			[mm]	2 • C _{cr,sp}					
Installation safety	factors	- 01,301				01,30			
Dry and wet concret	e		[-]			1,0			
Flooded hole		$\gamma_2 = \gamma_{\rm inst}$	[-]			1,2			
				•		,			

In absence of other national regulations $f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$ $h_{ef} > 9d$

Injection system fischer Powerbond	
Performances Characteristic values under tension load	Annex C 1

Table C2: Characteristic values under shear load

Steel failure without lever arm	Size					M10	M12	M16	M20	M24		
Steel Zinic plated Class Steel Property Stainless steel Property Class Steel Property Steel C Class Steel Property Steel C Class Steel Property Steel C Class	Steel 1	failure without lever a	rm									
Stainless steel Property Stainless Stainless steel Property Stainless Stainl		Stool zine plated	Property	5.8	[kN]	15	21	39	61	89		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl		·	class	8.8	[kN]	23	34	63	98	141		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl	.으 ^뽔	Stainless steel	Dranarti	50	[kN]	15	21	39	61	89		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl	ist /	Stairtiess steet		70	[kN]	20	30	55	86	124		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl	je	A4	Class-	80	[kN]	23	34	63	98	141		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl	rac Sta	High corrosion	Droporty-		[kN]	15	21	39	61	89		
Steel failure with lever arm Steel zinc plated Property Steel zinc plated Property Stainless steel Property Stainless steel Property Steel zinc plated Property Stainless steel Property Stainl	ha	resistance		70 ²⁾	[kN]	20	30	55	86	124		
Steel zinc plated Property 5.8 [Nm] 37 65 167 324 561	0 8	steel C	Class-	80	[kN]	23	34	63	98	141		
Steel zinc plated Class 8.8 Nm 60 105 266 519 898	Steel 1	failure with lever arm										
Stainless steel A4 Property Class Stainless steel A4 Property Class Stainless steel A4 Property Class Stainless steel A5 Stainless steel A4 Property Class Stainless steel A5 Stai		Stool zine plated	Property_	5.8	[Nm]	37	65	167	324	561		
Partial safety factor steel failure Steel zinc plated	Έ	Steel Zilic plated	class	8.8	[Nm]	60	105	266	519	898		
Partial safety factor steel failure Steel zinc plated	ie i	Ctainless steel	Dranarty	50	[Nm]	37	65	166	324	561		
Partial safety factor steel failure Steel zinc plated	ist	Stainless steel		70	[Nm]	52	92	233	454	785		
Partial safety factor steel failure Steel zinc plated	gn	A4		80	[Nm]	60	105	266	519	898		
Partial safety factor steel failure Steel zinc plated	gin	High corrosion resistance		50	[Nm]	37	65	166	324	561		
Partial safety factor steel failure Steel zinc plated	ha enc			70 ²⁾	[Nm]	52	92	233	454	785		
Partial safety factor steel failure Steel zinc plated	2 ف د	≥ steel C		80	[Nm]	60	105	266	519	898		
Steel Zinc plated class			ilure									
Stainless steel Property 50 [-] 2,38		Stool zine plated					1,25					
Stainless steel A4		Steel Zille plated	class	8.8	[-]		1,25					
A4 class 70 [-] 1,56 High corrosion resistance steel C		Stainless steel	Droporty-		[-]		2,38					
High corrosion resistance steel C Property class To2 [-] 1,25 steel C Steel C Rozer	1)	AA		70	[-]			1,56				
resistance steel C class 702 [-] 1,25 steel C 1,33 Concrete pryout failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors	YMs,V	A4	Class-	80				1,25				
Concrete pryout failure Class 70 [-] 1,23		High corrosion	Dranartu		[-]			2,38				
The steel C				70 ²⁾	[-]			1,25				
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors		steel C		80	[-]			1,33				
Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors												
CEN/TS 1992-4-5:2009 Section 6.3.3 Installation safety factors												
Section 6.3.3 Installation safety factors	Section	Section 5.2.3.3 resp. k_3 acc. to		[_]			2.0					
Installation safety factors	CEN/13 1992-4-3.2009			[-]			۷,0					
All installation conditions $\gamma_2 = \gamma_{inst}$ [-] 1,0												
	All inst	allation conditions	$\gamma_2 = r$	Yinst	[-]			1,0				

 $^{^{1)}}$ In absence of other national regulations $^{2)}\,f_{uk}=700\;N/mm^2;\;\;f_{yk}=560\;N/mm^2$

Injection system fischer Powerbond	
Performances Characteristic values under shear load	Annex C 2

Table C3.1: Displacements under tension load in uncracked concrete

Displacement-Factors for tension ¹⁾						
Size		M10	M12	M16	M20	M24
δ _{N0-Factor}	[mm/(N/mm²)]	0,03	0,04	0,05	0,07	0,09
δ _{N∞-Factor}	[mm/(N/mm²)]	0,05	0,06	0,08	0,10	0,13

Table C3.2: Displacements under tension load in cracked concrete

Displacement-Factors for tension ¹⁾							
Size M10 M12 M16 M20 M24						M24	
$\delta_{\text{N0-Factor}}$	[mm/(N/mm ²)]	0,07	0,09	0,11	0,14	0,18	
δ _{N∞-Factor}	[mm/(N/mm ²)]	0,10	0,13	0,17	0,21	0,27	

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\text{N}^{\infty}} = \delta_{\text{N}^{\infty}\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $(\tau_{Ed}:$ Design value of the applied tensile stress)

Table C4: Displacements under shear load

Displacement-Factors for shear load ¹⁾						
Size		M10	M12	M16	M20	M24
$\delta_{\text{V0-Factor}}$	[mm/kN]	0,15	0,12	0,09	0,07	0,06
δ _{N∞-Factor}	[mm/kN]	0,22	0,18	0,14	0,11	0,09

¹⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot \, V_{\text{Ed}}$

 $\delta_{\text{V}^{\infty}} = \delta_{\text{V}^{\infty}\text{-Factor}} \, \cdot \, V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Injection system fischer Powerbond	
Performances Displacements	Annex C 3